[image:]

12_Operations/DB_Disaster_Recovery_Guide.docx

Databricks Disaster Recovery Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Platform Operations Team

1. Executive Summary
This guide provides comprehensive disaster recovery (DR) strategies for Databricks deployments. It covers backup and restore procedures, multi-region deployments, data replication patterns, and recovery procedures. Following these guidelines ensures business continuity and data protection in case of regional outages or other disasters.
DR Objectives
	Metric
	Definition
	Typical Target

	RTO
	Recovery Time Objective - max acceptable downtime
	4-24 hours

	RPO
	Recovery Point Objective - max acceptable data loss
	1-24 hours

	MTTR
	Mean Time To Recovery - average recovery duration
	2-8 hours

2. DR Architecture
2.1 Multi-Region Architecture
┌───┐
│ DATABRICKS DISASTER RECOVERY ARCHITECTURE │
├───┤
│ │
│ PRIMARY REGION (Active) SECONDARY REGION (Standby) │
│ ┌───────────────────────────────────┐ ┌───────────────────────────────┐│
│ │ │ │ ││
│ │ ┌─────────────────────────────┐ │ │ ┌─────────────────────────┐ ││
│ │ │ Databricks Workspace │ │ │ │ Databricks Workspace │ ││
│ │ │ (Production) │ │ │ │ (DR Standby) │ ││
│ │ │ │ │ │ │ │ ││
│ │ │ • Active jobs │ │ │ │ • Jobs paused │ ││
│ │ │ • Active clusters │ │ │ │ • Clusters off │ ││
│ │ │ • Live dashboards │ │ │ │ • Configs synced │ ││
│ │ └─────────────────────────────┘ │ │ └─────────────────────────┘ ││
│ │ │ │ │ ▲ ││
│ │ ▼ │ │ │ ││
│ │ ┌─────────────────────────────┐ │ │ ┌─────────────────────────┐ ││
│ │ │ Unity Catalog Metastore │ │ │ │ Unity Catalog Metastore│ ││
│ │ │ (Primary) │──┼────┼─▶│ (Replicated) │ ││
│ │ └─────────────────────────────┘ │ │ └─────────────────────────┘ ││
│ │ │ │ │ ▲ ││
│ │ ▼ │ │ │ ││
│ │ ┌─────────────────────────────┐ │ │ ┌─────────────────────────┐ ││
│ │ │ Cloud Storage (S3/ADLS) │ │ │ │ Cloud Storage (S3/ADLS)│ ││
│ │ │ • Delta tables │──┼────┼─▶│ • Replicated data │ ││
│ │ │ • Unity Catalog storage │ │ │ │ • Async replication │ ││
│ │ │ • Checkpoints │ │ │ │ │ ││
│ │ └─────────────────────────────┘ │ │ └─────────────────────────┘ ││
│ │ │ │ ││
│ └───────────────────────────────────┘ └───────────────────────────────┘│
│ │
│ REPLICATION METHODS │
│ ┌───┐ │
│ │ • Cloud-native replication (S3 CRR / ADLS GRS) │ │
│ │ • Delta Sharing for catalog replication │ │
│ │ • Asset Bundles for configuration sync │ │
│ │ • Terraform/ARM templates for infrastructure │ │
│ └───┘ │
│ │
└───┘
2.2 DR Tiers
	Tier
	Description
	RTO
	RPO
	Cost

	Tier 1
	Hot standby, real-time replication
	< 1 hour
	< 15 min
	High

	Tier 2
	Warm standby, async replication
	4-8 hours
	1-4 hours
	Medium

	Tier 3
	Cold standby, daily backups
	24-48 hours
	24 hours
	Low

3. Data Backup Strategies
3.1 Delta Table Backup
Delta tables inherently support point-in-time recovery through time travel:
-- Check table history
DESCRIBE HISTORY production.sales.transactions;

-- Restore to specific version
RESTORE TABLE production.sales.transactions TO VERSION AS OF 42;

-- Restore to specific timestamp
RESTORE TABLE production.sales.transactions
TO TIMESTAMP AS OF '2025-01-28 10:00:00';

-- Clone table for backup (zero-copy)
CREATE TABLE backup.sales.transactions_backup_20250129
SHALLOW CLONE production.sales.transactions
VERSION AS OF 100;

-- Deep clone for independent copy
CREATE TABLE backup.sales.transactions_full_backup
DEEP CLONE production.sales.transactions;
3.2 Cross-Region Replication
AWS S3 Cross-Region Replication configuration
Configure in AWS Console or via CloudFormation

s3_crr_config = {
 "ReplicationConfiguration": {
 "Role": "arn:aws:iam::123456789:role/s3-crr-role",
 "Rules": [
 {
 "ID": "delta-tables-replication",
 "Status": "Enabled",
 "Priority": 1,
 "Filter": {
 "Prefix": "delta-tables/"
 },
 "Destination": {
 "Bucket": "arn:aws:s3:::dr-bucket-us-west-2",
 "ReplicationTime": {
 "Status": "Enabled",
 "Time": {"Minutes": 15} # 15-minute SLA
 },
 "Metrics": {
 "Status": "Enabled"
 }
 },
 "DeleteMarkerReplication": {
 "Status": "Enabled"
 }
 }
]
 }
}

Azure Blob Geo-Redundant Storage
Enable GRS or RA-GRS at storage account level
azure_storage_config = {
 "kind": "StorageV2",
 "sku": {
 "name": "Standard_RAGRS" # Read-access geo-redundant
 },
 "properties": {
 "replication": "RAGRS"
 }
}
3.3 Automated Backup Jobs
from databricks.sdk import WorkspaceClient
from datetime import datetime

w = WorkspaceClient()

def backup_critical_tables():
 """
 Create daily backups of critical tables using shallow clones.
 Shallow clones are space-efficient and support time travel.
 """

 backup_date = datetime.now().strftime('%Y%m%d')
 critical_tables = [
 "production.sales.transactions",
 "production.sales.customers",
 "production.inventory.products"
]

 for table in critical_tables:
 backup_table = f"backup.{table.split('.')[-1]}_{backup_date}"

 spark.sql(f"""
 CREATE OR REPLACE TABLE {backup_table}
 SHALLOW CLONE {table}
 """)

 print(f"Backed up {table} to {backup_table}")

def cleanup_old_backups(retention_days: int = 30):
 """Remove backups older than retention period."""

 cutoff_date = (datetime.now() - timedelta(days=retention_days)).strftime('%Y%m%d')

 backup_tables = spark.sql("""
 SELECT table_name
 FROM system.information_schema.tables
 WHERE table_schema = 'backup'
 """).collect()

 for row in backup_tables:
 table_name = row.table_name
 # Extract date from table name (e.g., transactions_20250101)
 if '_' in table_name:
 date_part = table_name.split('_')[-1]
 if date_part < cutoff_date:
 spark.sql(f"DROP TABLE IF EXISTS backup.{table_name}")
 print(f"Dropped old backup: backup.{table_name}")
4. Configuration Backup
4.1 Workspace Configuration Export
from databricks.sdk import WorkspaceClient
import json
from pathlib import Path

w = WorkspaceClient()

def export_workspace_config(output_dir: str):
 """Export all workspace configurations for DR."""

 output_path = Path(output_dir)
 output_path.mkdir(parents=True, exist_ok=True)

 # Export jobs
 jobs = list(w.jobs.list())
 with open(output_path / "jobs.json", "w") as f:
 json.dump([job.as_dict() for job in jobs], f, indent=2)

 # Export clusters
 clusters = list(w.clusters.list())
 with open(output_path / "clusters.json", "w") as f:
 json.dump([c.as_dict() for c in clusters], f, indent=2)

 # Export cluster policies
 policies = list(w.cluster_policies.list())
 with open(output_path / "cluster_policies.json", "w") as f:
 json.dump([p.as_dict() for p in policies], f, indent=2)

 # Export SQL warehouses
 warehouses = list(w.warehouses.list())
 with open(output_path / "sql_warehouses.json", "w") as f:
 json.dump([wh.as_dict() for wh in warehouses], f, indent=2)

 # Export secrets scopes (names only, not values)
 scopes = list(w.secrets.list_scopes())
 with open(output_path / "secret_scopes.json", "w") as f:
 json.dump([s.as_dict() for s in scopes], f, indent=2)

 # Export Unity Catalog objects
 catalogs = list(w.catalogs.list())
 with open(output_path / "catalogs.json", "w") as f:
 json.dump([c.as_dict() for c in catalogs], f, indent=2)

 print(f"Configuration exported to {output_path}")

Run export
export_workspace_config("/dbfs/backups/config/2025-01-29")
4.2 Asset Bundles for DR
databricks.yml - DR configuration

bundle:
 name: data-platform

targets:
 production:
 mode: production
 workspace:
 host: https://prod-workspace.cloud.databricks.com
 variables:
 region: us-east-1

 # DR target mirrors production
 dr:
 mode: production
 workspace:
 host: https://dr-workspace.cloud.databricks.com
 variables:
 region: us-west-2
 # Override storage locations for DR region
 resources:
 jobs:
 etl_pipeline:
 job_clusters:
 - job_cluster_key: main
 new_cluster:
 aws_attributes:
 zone_id: us-west-2a
Deploy to DR environment
databricks bundle deploy -t dr

Validate DR configuration matches production
databricks bundle validate -t dr
databricks bundle validate -t production
Compare outputs
5. Recovery Procedures
5.1 Failover Procedure
from databricks.sdk import WorkspaceClient
from datetime import datetime
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def failover_to_dr(
 primary_workspace: str,
 dr_workspace: str,
 jobs_to_activate: list
):
 """
 Execute failover from primary to DR workspace.

 Steps:
 1. Verify DR workspace is accessible
 2. Pause jobs in primary (if accessible)
 3. Activate jobs in DR
 4. Update DNS/routing
 5. Validate DR is operational
 """

 logger.info(f"Starting failover to DR workspace: {dr_workspace}")

 # Connect to DR workspace
 dr_client = WorkspaceClient(host=dr_workspace)

 # Step 1: Verify DR is accessible
 try:
 dr_client.current_user.me()
 logger.info("DR workspace is accessible")
 except Exception as e:
 logger.error(f"DR workspace not accessible: {e}")
 raise

 # Step 2: Pause primary jobs (best effort)
 try:
 primary_client = WorkspaceClient(host=primary_workspace)
 for job_name in jobs_to_activate:
 jobs = list(primary_client.jobs.list(name=job_name))
 for job in jobs:
 primary_client.jobs.update(
 job_id=job.job_id,
 new_settings={"schedule": {"pause_status": "PAUSED"}}
)
 logger.info(f"Paused primary job: {job_name}")
 except Exception as e:
 logger.warning(f"Could not pause primary jobs: {e}")

 # Step 3: Activate DR jobs
 for job_name in jobs_to_activate:
 dr_jobs = list(dr_client.jobs.list(name=job_name))
 for job in dr_jobs:
 dr_client.jobs.update(
 job_id=job.job_id,
 new_settings={"schedule": {"pause_status": "UNPAUSED"}}
)
 logger.info(f"Activated DR job: {job_name}")

 # Step 4: Update DNS (example - actual implementation depends on DNS provider)
 # update_dns_record("databricks.company.com", dr_workspace)

 # Step 5: Validate
 logger.info("Failover complete. Running validation...")
 validate_dr_environment(dr_client)

 return True

def validate_dr_environment(client: WorkspaceClient):
 """Validate DR environment is operational."""

 # Check jobs are running
 running_jobs = list(client.jobs.list())
 logger.info(f"DR has {len(running_jobs)} jobs configured")

 # Check SQL warehouses
 warehouses = list(client.warehouses.list())
 running_warehouses = [w for w in warehouses if w.state == "RUNNING"]
 logger.info(f"DR has {len(running_warehouses)} running SQL warehouses")

 # Run test query
 # client.statement_execution.execute_statement(...)
5.2 Failback Procedure
def failback_to_primary(
 primary_workspace: str,
 dr_workspace: str,
 jobs_to_activate: list,
 sync_data: bool = True
):
 """
 Execute failback from DR to primary workspace.

 Steps:
 1. Verify primary is recovered
 2. Sync data changes from DR to primary
 3. Pause DR jobs
 4. Activate primary jobs
 5. Update DNS/routing
 6. Validate primary is operational
 """

 logger.info(f"Starting failback to primary: {primary_workspace}")

 primary_client = WorkspaceClient(host=primary_workspace)
 dr_client = WorkspaceClient(host=dr_workspace)

 # Step 1: Verify primary is recovered
 try:
 primary_client.current_user.me()
 logger.info("Primary workspace is accessible")
 except Exception as e:
 logger.error(f"Primary not ready: {e}")
 raise

 # Step 2: Sync data changes (if any writes occurred in DR)
 if sync_data:
 sync_dr_changes_to_primary(dr_client, primary_client)

 # Step 3: Pause DR jobs
 for job_name in jobs_to_activate:
 dr_jobs = list(dr_client.jobs.list(name=job_name))
 for job in dr_jobs:
 dr_client.jobs.update(
 job_id=job.job_id,
 new_settings={"schedule": {"pause_status": "PAUSED"}}
)
 logger.info(f"Paused DR job: {job_name}")

 # Step 4: Activate primary jobs
 for job_name in jobs_to_activate:
 primary_jobs = list(primary_client.jobs.list(name=job_name))
 for job in primary_jobs:
 primary_client.jobs.update(
 job_id=job.job_id,
 new_settings={"schedule": {"pause_status": "UNPAUSED"}}
)
 logger.info(f"Activated primary job: {job_name}")

 # Step 5: Update DNS
 # update_dns_record("databricks.company.com", primary_workspace)

 # Step 6: Validate
 validate_dr_environment(primary_client)

 logger.info("Failback complete")
 return True
6. DR Testing
6.1 DR Test Checklist
	Test
	Frequency
	Description

	Backup Verification
	Weekly
	Verify backups complete successfully

	Restore Test
	Monthly
	Restore from backup to test environment

	Failover Drill
	Quarterly
	Execute failover to DR

	Full DR Test
	Annually
	Complete DR scenario with all stakeholders

6.2 DR Test Script
def run_dr_test(test_level: str = "basic"):
 """
 Run DR test at specified level.

 Levels:
 - basic: Verify backups and DR accessibility
 - intermediate: Test job failover
 - full: Complete failover with data validation
 """

 results = {"status": "PASSED", "tests": []}

 # Test 1: Verify backup completion
 backup_status = verify_backup_completion()
 results["tests"].append({
 "name": "Backup Verification",
 "status": "PASSED" if backup_status else "FAILED"
 })

 # Test 2: Verify DR workspace accessible
 dr_accessible = verify_dr_accessibility()
 results["tests"].append({
 "name": "DR Accessibility",
 "status": "PASSED" if dr_accessible else "FAILED"
 })

 if test_level in ["intermediate", "full"]:
 # Test 3: Verify job configurations match
 jobs_match = verify_job_configurations()
 results["tests"].append({
 "name": "Job Configuration Sync",
 "status": "PASSED" if jobs_match else "FAILED"
 })

 # Test 4: Test job execution in DR
 job_runs = test_job_execution_in_dr()
 results["tests"].append({
 "name": "DR Job Execution",
 "status": "PASSED" if job_runs else "FAILED"
 })

 if test_level == "full":
 # Test 5: Data validation
 data_valid = validate_dr_data_integrity()
 results["tests"].append({
 "name": "Data Integrity",
 "status": "PASSED" if data_valid else "FAILED"
 })

 # Test 6: End-to-end failover
 failover_success = test_failover_procedure()
 results["tests"].append({
 "name": "Failover Procedure",
 "status": "PASSED" if failover_success else "FAILED"
 })

 # Determine overall status
 if any(t["status"] == "FAILED" for t in results["tests"]):
 results["status"] = "FAILED"

 return results
7. Runbook Summary
7.1 Quick Reference
	Scenario
	Action
	Command/Procedure

	Restore table to point-in-time
	Use Delta time travel
	`RESTORE TABLE t TO TIMESTAMP AS OF '...'`

	Regional outage
	Execute failover
	Run `failover_to_dr()`

	Return to primary
	Execute failback
	Run `failback_to_primary()`

	Verify backups
	Check backup job
	Review backup job runs

	Test DR
	Run DR test
	Run `run_dr_test('full')`

7.2 Emergency Contacts
	Role
	Responsibility
	Contact

	DR Lead
	Coordinates DR activities
	dr-lead@company.com

	Platform Team
	Databricks operations
	platform-oncall@company.com

	Data Team
	Data validation
	data-oncall@company.com

	Databricks Support
	Platform issues
	support@databricks.com

Document Control
	Version
	Date
	Author
	Changes

	1.0
	2025-01-29
	Platform Ops Team
	Initial document

This document is maintained by the Platform Operations Team. For questions or updates, contact the team via the #platform-ops Slack channel.
image1.png
#MAST=CH
DIGITAL

